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Abstract. It is shown that Binder’s cumulantU = 1− 〈M4〉/ 3〈M2〉2 is very useful in the study
of the Kosterlitz–Thouless transition of two-dimensionalXY systems. It is possible to calculate
the critical exponentη without knowledge of the critical temperature, and to exclude the possibility
of a power law behaviour.

1. Introduction

The two-dimensionalXY system has been the subject of extensive experimental, analytical,
and numerical investigations [1]. Physically, the interest in this model arises from studies of
thin films of liquid helium [2] or Josephson junction arrays [3].

Two-dimensionalXY systems show a particular behaviour. The Mermin–Wagner
theorem [4] proves that no magnetization appears at non-zero temperature (T ). However,
a Kosterlitz–Thouless (KT) transition [5] exists at the critical temperatureTc ∼ 0.9, driven by
the unbounding of vortex–antivortex pairs.

This transition has some special features: forT < Tc the correlation length is infinite,
while for T > Tc it is exponential, decreasing contrary to the power law behaviour in the
standard transition. These facts prevent the direct application of methods useful in the analysis
of the standard transition and it is therefore difficult to obtain a clear result for the values of the
critical temperature and exponent. A better method for obtaining a reliableTc value is to use
the helicity parameter, defined as the response of the system to a twist in one direction. This
knowledge of the jump at the critical temperature allows one to obtainTc ∼ 0.892. However,
in more complicated systems, such as frustrated systems (describing the Josephson junction
array in a magnetic field), the jump of the helicity at the critical temperature is unknown and it
would be very useful to obtain a method for obtainingTc without using this jump. Moreover,
the exponential behaviour in the KT transition has been questioned and a power law behaviour
has been found in numerical simulations [6].

In this letter we will try to resolve these two questions. The method that is introduced
is based on the Binder’s cumulantU = 1− 〈M4〉/ 3〈M2〉2. This parameter has proved very
useful for a standard power law transition and we will show that it is also useful in the case
described here.
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2. Model and algorithm

We choose for the classicalO(2)model an isotropic ferromagnet on a two-dimensional simple
square lattice. The Hamiltonian for such spin system is given by:

H = J
∑
(ij)

Si .Sj (1)

whereSi is a two-component classical vector of unit length andJ is the ferromagnetic coupling
constant (J < 0). We considerL ∗ L (L from 20 to 600) systems with nearest-neighbour
interactions and periodic boundary conditions.

We use Wolff’s single-cluster algorithm [7]. It has been demonstrated that this method is
very effective in reducing critical slowing down for theO(2) ferromagnetic spin model [8].

All simulations were carried out at temperatures where the finite size effects (FSS) are
important: 0.89 < T < 0.92 (for example, with sizeL =100 eight simulations at different
temperatures were performed). In each simulation, at least 5 million measurements were made
after enough single cluster updates (1 million) were carried out for equilibration. Note that
our statistic is one order greater than that in previous studies [6].

We use in this work the histogram Monte Carlo technique developed by Ferrenberg
and Swendsen [9, 10]. From a simulation done atT0, this technique allows one to obtain
thermodynamic quantities atT close toT0. To obtain the quantities over the whole scale of
temperatures we interpolate the results from different simulations by using smooth functions.
Our errors are calculated with the help of the Jackknife procedure [11].

The quantities needed for our analysis in the FSS region are defined below. For each
temperature we calculate:

χ = N〈M2〉
kBT

(2)

U = 1− 〈M
4〉

3〈M2〉2 (3)

whereβ = 1/T , M is the order parameter,χ the magnetic susceptibility per site,U is the
fourth order Binder’s cumulant [12] and〈. . .〉means the thermal average. Note that the order
parameterM is defined by the sum of all the spins.

3. Results

We concentrate first on the possibility of a power law behaviour for this system. This hypothesis
has recently found some support [6]. In this case we can apply the standard laws for the FSS
[13, 14]. In particular, to findTc we can use the FSS of Binder’s cumulantU . We record the
variation ofU with T for various system sizes and then locate the intersection of these curves.
We compare the value ofU for two different lattice sizesL andL′ = bL, making use of the
condition [12]

UbL

UL


T=Tc
= 1. (4)

In figure 1U is plotted as function of the temperature for different sizes fromL = 60 to
L = 600. We notice that the curves cross each other; this is in conflict with the common belief
for this model that the curves begin to separate at the critical temperature without crossing
[15].
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Figure 1. Binder’s parameterU as function of the temperature for various values ofL. In the left
part of the figure, from bottom to top:L = 40, 60, 80, 100, 150, 300, 400, 600. For clarity, the
valuesL = 120 and 200 are not shown.
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Figure 2. CrossingT plotted versus inverse logarithm of the scale factorb = L′/L . The results
for L = 40, 60, 80, 120, 200 are shown. The estimated temperatureTKT ∼ 0.8921 comes from
[17].

Due to the presence of residual corrections to finite size scaling, one actually needs to
extrapolate the results of this method for (lnb)−1→ 0. From this data we construct figure 2.
This figure shows two different behaviours for each value. Firstly, for a value ofb not too large
the temperature of crossing seems to have a linear fit, but for large enoughb the points show a
‘crossover’ to a new smaller critical temperature. For small lattices (L < 100) and smallb the
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first linear curves (dashed line) converge to a critical temperatureT ∼ 0.903, and this could
explain the numerical results in favour of a power law behaviour [6]. However, the ‘crossover’
which appears for all sizes excludes the possibility of a power law, even in presence of a strong
correction. Moreover, the upper bound of critical temperature which we obtain (Tc < 0.900)
does not agree with the result of high temperature expansion when a power law fit is used
(Tc ∼ 0.930) [16]. Our results are thus in favour of an exponential behaviour:

U(L, T ) = f (L/ξ) + corrections (5)

= f {L exp[c (T − Tc)ν ]} + corrections (6)

wherec is a constant,ν = 1/2 andf is an unknown function. We have tried various fits to
obtain the critical temperature found using the helicityTKT ∼ 0.892 [17], but the presence of
the exponential (or logarithmic) form makes the fit useless and the only method that we are
able to use is shown in figure 2; i.e., a linear fit whenb is large enough. However, if our results
are compatible with the exponential form andTKT = 0.892, the critical temperature obtained
by this fit can only give a rough estimate.

We concentrate now on the value of the critical exponentη. We can define it using a power
law, valid whatever the form ofξ :

χ = L2−ηg(L/ξ) . (7)

To obtainη we can either use this formula at the critical temperature, whereξ is infinite, or
try to plotχ L−(2−η) as function ofg(L/ξ), where, obviously,ξ depends onTc. Therefore, we
have to know the value ofTc. This value is difficult to obtain for ferromagnetic systems (this
work) and has been widely debated for the frustrated case (for example see [3]). We propose
now a way to avoid this problem. The solution is to use the Binder cumulantU . In figures 3–5
we plotχ L−(2−η) as function ofU . Due to the form ofU in (7) and neglecting corrections all
sizes must coalesce in a single curve. The figures show our results forη = 0.240, 0.250 and
0.260. We observe that clearly the case 0.250 fits best. So we are able to obtain

η = 0.250(5) (8)

compatible with the theoretical valueη = 0.25.
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Figure 3. χL−(2−η) as function ofU with η = 0.240 for the valuesL = 80–600.
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Figure 4. χL−(2−η) as function ofU with η = 0.250 for the valuesL = 80–600. All the curves
collapse to one. There is only one unknown parameter (η).
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Figure 5. χL−(2−η) as function ofU with η = 0.260 for the valuesL = 80–600.

4. Conclusion

We have shown that the use of the Binder cumulant is very useful in the study of the
Kosterlitz–Thouless transition. Contrary to the common belief the cumulants cross for different
sizes in the finite size region. Using this fact we are able to exclude the possibility of a
power law behaviour for the transition and to give an upper bound for the critical temperature
Tc < 0.90. Moreover, we are able to calculate the exponentηwithout knowledge of the critical
temperature.
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We have applied our scheme to the ferromagnetic system but it could be useful for the
frustrated case corresponding to the experimental Josephson junction array in a magnetic field.

This work was supported by the Alexander von Humboldt Foundation. I am grateful to
L Beierlein for support, discussions and for critically reading the manuscript.
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